

NgRx - Reactive State Management for

Angular

Nils Mehlhorn

This version was published on 2020-11-24.

Copyright © 2020 Nils Mehlhorn. All Rights Reserved.

The official NgRx logo is used on the cover under CC BY 4.0

This book is for sale at gum.co/angular-ngrx-book

2

https://creativecommons.org/licenses/by/4.0/
https://gumroad.com/l/angular-ngrx-book

Contents

Preface 5

Share This Book . 5

Feedback . 5

Acknowledgements . 5

About the Author . 6

1 Introduction 7

1.1 Motivation . 7

1.2 Concepts and Terminology . 11

1.3 NgRx Is Not Just A Store . 13

1.4 YouMight Not Need NgRx . 13

2 Example App 15

3 Installation 17

4 First Steps 19

5 Debugging 24

6 File Structure and Naming 28

7 State 32

7.1 Normalization . 34

7.2 What Not to Put in the State . 36

8 Actions 40

8.1 Action Creators . 41

8.2 Action Hygiene . 45

9 Reducers 46

9.1 Creating Reducers . 47

9.2 Registering Reducers . 49

9.3 Mutable APIs with immer.js . 50

9.4 Meta-Reducers . 52

9.5 Error Handling . 55

10 Selectors 56

10.1 Computed Selectors . 58

10.2 Parameterized Selectors . 61

10.3 Pipeable Selectors . 63

11 Fat vs. Thin Actions and Reducers 65

12 Feature Modules 68

12.1 Multiple Reducers per Module . 73

12.2 Deciding between root and feature state . 75

3

13 Effects 77

13.1 Installation . 77

13.2 Creating Effects . 80

13.3 Accessing the State . 84

13.4 Error Handling . 87

13.5 Optimistic vs. Pessimistic Updates . 90

13.6 Initial Data and Effects . 92

13.7 Non-Dispatching Effects . 94

13.8 Other Effect Sources . 96

14 Testing 99

14.1 Testing Reducers . 99

14.2 Test Object Factories . 102

14.3 Testing Action Creators . 105

14.4 Testing Selectors . 105

14.5 Testing Observables . 107

14.6 Testing Effects . 111

14.7 Testing Components and Services . 114

15 Performance 118

15.1 OnPush Change Detection . 119

15.2 Tracking List Elements . 119

15.3 Efficient Handling of Remote Data . 120

16 Patterns 121

16.1 Container and Presentational Components . 121

16.2 Facades . 125

16.3 Re-Hydration . 128

17 Router Store 134

17.1 Installation . 134

17.2 Selecting Router State . 136

17.3 Reacting to Router Actions . 138

18 Entity Abstraction 140

18.1 Installation . 140

18.2 Entitiy State and Adapter . 141

18.3 When to Use . 144

19 Data Abstraction 145

Resources 151

4

Preface

Share This Book

Please help me by spreading the word about this bookwith your colleagues and on places like Twitter or

LinkedIn. Here’s something you can tweet:

I’m reading the NgRx book for reactive state management in Angular by @n_mehlhorn #javascript

gum.co/angular-ngrx-book

Also, it would mean the world to me if you left a five-star review on Gumroad.

Feedback

If you have any feedback or questions, reach out to me on Twitter @n_mehlhorn or via email to

contact@nils-mehlhorn.de.

Acknowledgements

Thanks to Simon Henke, Tim Deschryver, GregorWoiwode, DavidMüllerchen and Alex Okrushko for

reviewing this book. Moreover, I want to thank the NgRx, Angular and RxJS teams for their efforts.

I’d also like to express my gratitude towards the whole Angular community for being welcoming and

helping me learn and grow.

5

https://nils-mehlhorn.de/short/qkZHR
https://nils-mehlhorn.de/short/qkZHR
https://nils-mehlhorn.de/short/RpfEd
https://nils-mehlhorn.de/short/PCMam
mailto:contact@nils-mehlhorn.de

About the Author

I’m a freelance software engineer, trainer, speaker and author. While working on enterprise software,

helping others to do the same, as well as building the online graphics tool startup SceneLab, I became a

big fan of the NgRx library. After writing multiple blog posts on advanced NgRx topics and building a

library for undo-redo, I’ve nowput allmy experience into this book to provide youwith solid foundations

and advanced patterns for approaching state management with NgRx in Angular.

You can followme on Twitter, connect with me on LinkedIn, visit mywebsite to read new articles and

work with me to build user-focused solutions without sacrificing maintainability.

6

https://nils-mehlhorn.de/short/6FrbE
https://nils-mehlhorn.de/short/rfAz8
https://nils-mehlhorn.de/short/PCMam
https://nils-mehlhorn.de/short/cQptL
https://nils-mehlhorn.de/short/jtTsg
https://nils-mehlhorn.de/short/NoZTM

Chapter 1

Introduction

1.1 Motivation

NgRx (short forAngular Reactive Extensions) is a group of open-source libraries that’s mainly concerned

with state management in Angular applications. So, talking about NgRxmostly means talking about

state. When starting out development with Angular you’re probably not explicitly concerned with state

or where it resides in your application. However, as your requirements grow, youmay notice that some

of the hardest tasks during development stem from updating and synchronizing states - and in modern

web applications there’s a couple of those and they’re all over the place:

• view state: what’s displayed?

• client state: where are we in the application? What’s the data? What are the inputs and outputs?

• browser state: what’s the URL?What’s saved in the storage? Is the network online?

• server state: what’s persisted in the database(s)?

You could break these apart further and probably mention additional ones - especially as platforms and

tech in general progress more andmore as time goes on. Basically, anything that can change within the

context of your app may be called state.

The Angular framework, arguably evenmore than other ones, already has certain state management

techniques built-in. Just consider one of the main building blocks: components. They act as a bridge

between client and view state as they render and receive data via template bindings. At the same time,

components are classes which can naturally encapsulate state through instance properties. This way,

components aren’t simply responsible for view synchronization, but also become state containers. That’s

totally fine, yet can get difficult when you need the same data in multiple components. In Angular you’d

overcome such difficulties through @Input() and @Output() bindings between parent and child

components. Consequently, your state will flow along the view hierarchy.

This gets tricky when some part of state has to be shared between components that are fairly distant in

terms of the view hierarchy. You’d pull at lot of state into higher up components, if not into the root

7

https://nils-mehlhorn.de/short/73UAk

component itself while other components might forward data that they’re not really concerned with.

We end up with these messy hybrids of state containers and view-state bridges only to serve the way in

which the latter are organized.

Figure 1.1: In Angular, state can be shared via inputs and outputs but also by binding to services outside

of the view hierarchy. This way you don’t need to funnel state across various parents when connecting

otherwise distant components.

Again, Angular offers a solution: services. These class instances live outside of the view hierarchy

and can be injected into any component - they’re perfect for sharing state. If we’d be talking about

other frameworks, this could’ve already been the point for proposing a solution in the vein of NgRx.

But whenwe’re working with Angular, services already enable us to build dedicated state containers

while components can focus on rendering views and triggering state changes back in a service. The

centerpiece of NgRx is in fact a state container service, but it’s also a bit more than that.

Now, we’ve put our state into services, sharing data gets easier, but we still encounter problemswith

managing it in plain class properties. Particularly, it’s hard to knowwhen some state changes, especially

when state objects can be mutated from all sorts of different places in our application. That’s the point

where Angular developers usually reach for observable streams and immutability. Components then

listen to a stream of subsequent states while they send off commands via service methods. In practice,

this approach is often based on an RxJS BehaviorSubject .

Essentially, we’re introducing an indirection following the Command Query Responsibility Segregation

(CQRS) pattern which gives us unidirectional data flow. There are now predefined ways in which state

can change andwe can be sure that all consumers will be notified of those changes (see Figure 1.2).

The thing is, while command and query are now technically separated, each component still has to

knowwhich command it has to send to which service in order to have its query resolved with the state

8

https://nils-mehlhorn.de/short/nQNyM
https://nils-mehlhorn.de/short/dXobd

Figure 1.2: Separating commands and queries allows for unidirectional data flow and therefore optimized

change detection and interception

it requires. As an application grows, the number of commands will do the samewhile some commands

need to be propagated between different state containers. Throw asynchronism (e.g. HTTP requests)

into the mix and it’s easy to create an entangled mess of stateful services that’s rife with race conditions

(see Figure 1.3).

Figure 1.3: Synchronizing shared states can get messy, especially with a command-oriented architecture

and when async tasks are involved

The NgRx solution: replace commands with events and introduce an event-bus. Instead of issuing

commands to a specific service, we now broadcast events globally while each part of the state can react

independently. Since we now nomore knowwhere the state is needed it has to reside on a global level.

However, this waywe also have a single-source of truth for shared state.

This second indirection is arguably even more scalable as we can just plug new receivers onto the

9

event-buswithoutmodifying the sending side. Additionally, we can factor out asynchronism. Instead of

having asynchronous command chains, tasks like an HTTP request can signal their completion through

the event-bus. This way all considerations regarding state, while they still get complex as you’re building

complex applications, can remain comprehensible.

Figure 1.4: With NgRx, shared state is elevated to global state that updates based on events

Eventually, the reasoning behind NgRx is a combination of detaching state from the view hierarchy,

separating commands and queries as well as benefitting from event-based programming. That doesn’t

mean that any of the intermediate steps are wrong or that they exclude each other. It’s just that these

considerations seem to resurface over and over again for developers when they’re working on fairly

complex applications. That’s what happened to programmers working with Elm, then the people at

Facebook formulated their Flux pattern leading to the Redux implementation. Later on, the Google

engineers working on Firebase went on to express the same approach for the Angular world within

NgRx. At the end of the day though, you’re probably not getting paid for coming up with sophisticated

state management solutions but rather for delivering working applications.

Leveraging a formalized solution like NgRx opens up a whole community where people speak the same

state management language and have created convenient development tools and drop-in extensions.

You’ll be able to time-travel through your application, facilitate fast restarts based on cached data or

easily implement features like undo-redo - all while providing maximum performance. Learning NgRx

and its underlying principles won’t solve all your problems, but it will put a battle-tested tool in your

belt for approaching state management in modern software development.

10

https://nils-mehlhorn.de/short/cGgTF
https://nils-mehlhorn.de/short/THaoN
https://nils-mehlhorn.de/short/Uet7x
https://nils-mehlhorn.de/short/SqCBY
https://nils-mehlhorn.de/short/mF6CV

