NGRX

Reactive State
Management for
Angular

Nils Mehlhorn

NgRx - Reactive State Management for
Angular

Nils Mehlhorn

This version was published on 2020-11-24.

Copyright © 2020 Nils Mehlhorn. All Rights Reserved.

The official NgRx logo is used on the cover under CC BY 4.0

This book is for sale at gum.co/angular-ngrx-book

https://creativecommons.org/licenses/by/4.0/
https://gumroad.com/l/angular-ngrx-book

Contents

Preface

N o0 oA~ WD

Share ThisBook
Feedback
Acknowledgements
Aboutthe Author

Introduction

11 Motivation
1.2 Concepts and Terminology . .
1.3 NgRxIsNot Just A Store . . .
1.4 You Might Not Need NgRx . .

Example App

Installation

First Steps

Debugging

File Structure and Naming

State
71 Normalization
7.2 What Not to Put in the State .

Actions
81 ActionCreators
8.2 ActionHygiene

Reducers

91 CreatingReducers.
9.2 Registering Reducers
9.3 Mutable APIs with immer.js .
9.4 Meta-Reducers
9.5 ErrorHandling

10 Selectors

10.1 Computed Selectors
10.2 Parameterized Selectors . . .
10.3 Pipeable Selectors

11 Fat vs. Thin Actions and Reducers

12 Feature Modules

12.1 Multiple Reducers per Module

12.2 Deciding between root and featurestate

15
17
19
24
28

32
34
36

40
41
45

46
47
49
50
52
55

56
58
61
63

65

13 Effects 77

131 Installation e e e e e 77
132 CreatingEffects e 80
13.3 AccessingtheState e 84
13.4 ErrorHandling e e 87
13.5 Optimistic vs. PessimisticUpdates 90
13.6 Initial Dataand Effects 92
13.7 Non-DispatchingEffectso 94
13.8 Other EffectSources e 96
14 Testing 99
141 TestingReducers e 99
14.2 TestObject Factories e e e 102
14.3 Testing ActionCreators e 105
14.4 Testing Selectors e e e 105
145 TestingObservables e 107
14.6 TestingEffects e e 111
14.7 Testing Componentsand Services i i i e e 114
15 Performance 118
151 OnPushChangeDetection e 119
15.2 Tracking ListElements e 119
15.3 Efficient Handlingof RemoteData 120
16 Patterns 121
16.1 Container and Presentational Components 121
162 Facades e e e 125
16.3 Re-Hydration e 128
17 Router Store 134
171 Installation e e e 134
17.2 SelectingRouter State e 136
17.3 ReactingtoRouter Actions e 138
18 Entity Abstraction 140
181 Installation e e e e e 140
18.2 Entitiy Stateand Adapter. e 141
183 WhentoUse e e e e e 144
19 Data Abstraction 145
Resources 151

Preface

Share This Book

Please help me by spreading the word about this book with your colleagues and on places like Twitter or

LinkedIn. Here's something you can tweet:

I'm reading the NgRx book for reactive state management in Angular by @n_mehlhorn #javascript

gum.co/angular-ngrx-book

Also, it would mean the world to me if you left a five-star review on Gumroad.

Feedback

If you have any feedback or questions, reach out to me on Twitter @n_mehlhorn or via email to

contact@nils-mehlhorn.de.

Acknowledgements

Thanks to Simon Henke, Tim Deschryver, Gregor Woiwode, David Miillerchen and Alex Okrushko for
reviewing this book. Moreover, I want to thank the NgRx, Angular and RxJS teams for their efforts.
I'd also like to express my gratitude towards the whole Angular community for being welcoming and

helping me learn and grow.

https://nils-mehlhorn.de/short/qkZHR
https://nils-mehlhorn.de/short/qkZHR
https://nils-mehlhorn.de/short/RpfEd
https://nils-mehlhorn.de/short/PCMam
mailto:contact@nils-mehlhorn.de

About the Author

I'm a freelance software engineer, trainer, speaker and author. While working on enterprise software,
helping others to do the same, as well as building the online graphics tool startup SceneLab, I became a
big fan of the NgRx library. After writing multiple blog posts on advanced NgRx topics and building a
library for undo-redo, I've now put all my experience into this book to provide you with solid foundations

and advanced patterns for approaching state management with NgRx in Angular.

You can follow me on Twitter, connect with me on LinkedIn, visit my website to read new articles and

work with me to build user-focused solutions without sacrificing maintainability.

https://nils-mehlhorn.de/short/6FrbE
https://nils-mehlhorn.de/short/rfAz8
https://nils-mehlhorn.de/short/PCMam
https://nils-mehlhorn.de/short/cQptL
https://nils-mehlhorn.de/short/jtTsg
https://nils-mehlhorn.de/short/NoZTM

Chapter 1

Introduction

1.1 Motivation

NgRx (short for Angular Reactive Extensions) is a group of open-source libraries that’s mainly concerned
with state management in Angular applications. So, talking about NgRx mostly means talking about
state. When starting out development with Angular you're probably not explicitly concerned with state
or where it resides in your application. However, as your requirements grow, you may notice that some
of the hardest tasks during development stem from updating and synchronizing states - and in modern

web applications there’s a couple of those and they’re all over the place:

e view state: what's displayed?
e client state: where are we in the application? What's the data? What are the inputs and outputs?
¢ browser state: what's the URL? What's saved in the storage? Is the network online?

e server state: what's persisted in the database(s)?

You could break these apart further and probably mention additional ones - especially as platforms and
tech in general progress more and more as time goes on. Basically, anything that can change within the

context of your app may be called state.

The Angular framework, arguably even more than other ones, already has certain state management
techniques built-in. Just consider one of the main building blocks: components. They act as a bridge
between client and view state as they render and receive data via template bindings. At the same time,
components are classes which can naturally encapsulate state through instance properties. This way,
components aren’t simply responsible for view synchronization, but also become state containers. That’s
totally fine, yet can get difficult when you need the same data in multiple components. In Angular you'd
overcome such difficulties through @Input() and @Output() bindingsbetween parentand child

components. Consequently, your state will flow along the view hierarchy.

This gets tricky when some part of state has to be shared between components that are fairly distant in

terms of the view hierarchy. You'd pull at lot of state into higher up components, if not into the root

https://nils-mehlhorn.de/short/73UAk

component itself while other components might forward data that they’re not really concerned with.
We end up with these messy hybrids of state containers and view-state bridges only to serve the way in

which the latter are organized.

(‘_ompone,r\-r

Local Stote '

Component Service.
(‘_ompone_n-r
Shored Stote Shared
Locel St
bie) Io / bincling
Component Component Component

BT Lol Seave

Figure 1.1: In Angular, state can be shared via inputs and outputs but also by binding to services outside
of the view hierarchy. This way you don't need to funnel state across various parents when connecting
otherwise distant components.

Again, Angular offers a solution: services. These class instances live outside of the view hierarchy
and can be injected into any component - they’re perfect for sharing state. If we'd be talking about
other frameworKks, this could've already been the point for proposing a solution in the vein of NgRx.
But when we're working with Angular, services already enable us to build dedicated state containers
while components can focus on rendering views and triggering state changes back in a service. The

centerpiece of NgRx is in fact a state container service, but it’s also a bit more than that.

Now, we've put our state into services, sharing data gets easier, but we still encounter problems with
managing it in plain class properties. Particularly, it's hard to know when some state changes, especially
when state objects can be mutated from all sorts of different places in our application. That’s the point
where Angular developers usually reach for observable streams and immutability. Components then
listen to a stream of subsequent states while they send off commands via service methods. In practice,

this approach is often based on an RxJS BehaviorSubject .

Essentially, we're introducing an indirection following the Command Query Responsibility Segregation
(CQRS) pattern which gives us unidirectional data flow. There are now predefined ways in which state

can change and we can be sure that all consumers will be notified of those changes (see Figure 1.2).

The thing is, while command and query are now technically separated, each component still has to

know which command it has to send to which service in order to have its query resolved with the state

https://nils-mehlhorn.de/short/nQNyM
https://nils-mehlhorn.de/short/dXobd

U push dota render
ErVice. e Componert
Shared 4
i
commancl S +rigger

Figure 1.2: Separating commands and queries allows for unidirectional data flow and therefore optimized
change detection and interception

it requires. As an application grows, the number of commands will do the same while some commands
need to be propagated between different state containers. Throw asynchronism (e.g. HTTP requests)
into the mix and it’s easy to create an entangled mess of stateful services that’s rife with race conditions

(see Figure 1.3).

) push oo
async
=
%, command _ Local Stote
Puslv\ dota
Service /
Shared NI, push dotra
V
S+ote i = Component
State || <l

A}Q\i command]
o

Service pvsh dodto

Sharedd
Stodte.

pvsh dota

Figure 1.3: Synchronizing shared states can get messy, especially with a command-oriented architecture
and when async tasks are involved

The NgRx solution: replace commands with events and introduce an event-bus. Instead of issuing
commands to a specific service, we now broadcast events globally while each part of the state can react
independently. Since we now no more know where the state is needed it has to reside on a global level.

However, this way we also have a single-source of truth for shared state.

This second indirection is arguably even more scalable as we can just plug new receivers onto the

event-bus without modifying the sending side. Additionally, we can factor out asynchronism. Instead of
having asynchronous command chains, tasks like an HTTP request can signal their completion through
the event-bus. This way all considerations regarding state, while they still get complex as you're building

complex applications, can remain comprehensible.

Service
Global
e e Stote Q,'_,%
Component c}p_xﬂ*
L o Q"’é’\ . Nﬁrg Service
ocal Stote j £ o

dl' b] M

£ 9
) d
Qompov\e_n-l'

Component

| Local Stote |

I Lo'r.'.al Stote. —f

Figure 1.4: With NgRx, shared state is elevated to global state that updates based on events

Eventually, the reasoning behind NgRx is a combination of detaching state from the view hierarchy,
separating commands and queries as well as benefitting from event-based programming. That doesn’t
mean that any of the intermediate steps are wrong or that they exclude each other. It’s just that these
considerations seem to resurface over and over again for developers when they’re working on fairly
complex applications. That’s what happened to programmers working with Elm, then the people at
Facebook formulated their Flux pattern leading to the Redux implementation. Later on, the Google
engineers working on Firebase went on to express the same approach for the Angular world within
NgRx. At the end of the day though, you're probably not getting paid for coming up with sophisticated

state management solutions but rather for delivering working applications.

Leveraging a formalized solution like NgRx opens up a whole community where people speak the same
state management language and have created convenient development tools and drop-in extensions.
You'll be able to time-travel through your application, facilitate fast restarts based on cached data or
easily implement features like undo-redo - all while providing maximum performance. Learning NgRx
and its underlying principles won'’t solve all your problems, but it will put a battle-tested tool in your

belt for approaching state management in modern software development.

10

https://nils-mehlhorn.de/short/cGgTF
https://nils-mehlhorn.de/short/THaoN
https://nils-mehlhorn.de/short/Uet7x
https://nils-mehlhorn.de/short/SqCBY
https://nils-mehlhorn.de/short/mF6CV

