A UNDO-REDG
WITH ANGULAR &

NGRX

o
o
=
Ll
(l
B

Minimize opportunity for error, but
accept that mistakes will happen

@n_mehlhorn

@n_mehlhorn

n Sc

Untitled Project

ane

Export

100

@ I
L

scenelab.io

708 I 498

Pencil 2
. Stack Of Paper Ta...

Fern

N I I.S M EH I_H 0 R N @ nils-mehlhorn.de

freelance software engineer Q @n_mehlhorn

founder of scenelab.io
@n_mehlhorn

NGRX BOOK s

Reactive State
Management for

Pay what you want for the oo
complete learning resource

gum.co/angular-ngrx-book

Nils Mehlhorn

@n_mehlhorn

ERROR TOLERANCE = USER-FRIENDLY DESIGN

e users have different backgrounds
e ease onboarding

- confidence & creativity

A browser supports only some interactions

@n_mehlhorn

KEYBOARD SHORTCUTS: CONSIDERATIONS

e common combinations: [@igkaVd / (@RI sliidkV4

e provide legend and/or tooltips
e consider existing browser shortcuts

e consider internationalization

@n_mehlhorn

KEYBOARD SHORTGUTS: IMPLEMENTATION

—~~
~—

e Key Event Bindings —

e EventManager \
o NgRX Effe Ct !! Recommended Read

N\

shortcut$ = createEffect
fromEvent(document, ‘keydown

pipe

Keyboard Shortcuts in Angular -- Netanel Basal

@n_mehlhorn

https://nils-mehlhorn.de/posts/indicating-loading-the-right-way-in-angular

@n_mehlhorn

State everywhere
Where to begin?

10

dispatch r

A

render ‘

j trigger
ACTION

REDUCER

STORE J -

REDUX / NGRX ARCHITECTURE

11

Single Source of Truth

@n_mehlhorn

\

N
S
~

~
~
\

[V

—P ACTION -~
dispatch

Services
Components

Undo-Redo
 / History?

@n_mehlhorn 13

@n_mehlhorn

ACTION .

PURE FUNCTIONS

META-REDUCER

\ Put Undo-Redo

Logic here

14

default:
const newPresent = reducer(state, action)
history = {
past: [history.present, ...history.past],
present: newPresent,
future: [] // clear future

}

interface History { return newPresent

past: Array<State>
present: State

future: Array<State>

}

case 'UNDO':
const previous = history.past|[0]
const newPast = history.past.slice(1)
history = {
past: newPast,
present: previous,
future: [history.present, ...history.future]

}

return previous

@n_mehlhorn

intuitive

most i

16

@n_mehlhorn

Al . A2 .

not
undoable undoable .

ALL OR NOTHING: GOING BACK MEANS LOSING THE GREEN SQUARE

11

HISTORY OF STATES

intuitive implementation it can get big

most libraries do this it's all or nothing

careful reducer composition required

@n_mehlhorn

18

@n_mehlhorn

lz

lz

ls

not
undoable

A2
_—
not

undoable

A2
—_—
not
undoable

HISTORY OF ACTIONS

A3 .
—_—

interface History {
actions: Array<Action>
base: State

}

19

interface History {
actions: Array<Action>
base: State

}

const lastState = history.actions
.slice(@, -1) // every action except the last one
.reduce(
(state, action) => reducer(state, action),
history.base

HISTORY OF ACTIONS

actions < states

ignore some actions

@n_mehlhorn

tricky implementation

expensive recalculation

21

@n_mehlhorn

Delorean Vectors by Vecteezy

22

// initial state
const state = { "firstname": "John" }

// JSON Patch representing what reducer did to change the state
const patch = [

{ "op": "add", "path": "/lastname", "value": "Doe" }

]

// result state when applying patch to S1
const next = { "firstname": "John", "lastname": "Doe" }

// result state from before
const next = { "firstname": "John", "lastname": "Doe" }

// JSON Patch representing the reverse
// of what reducer did to change the state
const inversePatch = |

{ "op": "remove", "path": "/lastname" }
]

// resulting initial state when applying inversePatch to S2
const state = { "firstname": "John" }

@n_mehlhorn

state

draft

COPY-ON-WRITE

next

25

import produce, {applyPatches} from "immer"
const state = { "firstname": "John" }
let undoPatches

const next = produce(
state,
draft => {
draft.lastname = "Doe"

; o
(patches, inversePatches) => { Immer

undoPatches = inversePatches
}

)

const patched = applyPatches(next, undoPatches)

expect(patched) .toEqual(state)

HISTORY OF PATGHES

@n_mehlhorn

lightweight
ignore some actions
feasible implementation

no recalculation

requires Immer

2]

NGRX-WIEDER g’g

@n_mehlhorn

patch-based undo-redo
ignore actions
merge actions
segmentation

DEMO

28

https://stackblitz.com/github/nilsmehlhorn/ngrx-wieder-example

1. Visit Blog

2. Join Mailing List
3. Follow On Twitter
4. Work With Me

nils-mehlhorn.de

@n_mehlhorn

Nils Mehlhorn BLOG TALKS MAILINGLIST WORKWITHME

DOWNLOAD

1111111]]
111177

Angular File Download with Progress

MARCH 10, 2020

Downloading fles is a common task for web applications. files could be some PDF, ZIP or any other binary
or text-based file that you want to make accessible to your users. Here's how you can download files in Angular
either with a rather.

web development frontend angular

d Environments

Angular Material Pagination Angular Environment Setup -
Datasource Safe & Testable

DECEMBER 19,2019 NOVEMBER 21, 2019

Handling Observables with
Structural Directives in
Angular

FEBRUARY 20

Handiing observables is a much discussed topic in
Angular. There are muliple ways to get reactive
values displayed in your template, but sometimes
they all just feel a bit clunky. Let's explore which
‘options are available, how they work and how we.

web development frontend angular

What You Can Do with
JavaScript Today

SEPTEMBER 16, 2019

29

