
UNDO-REDO
WITH ANGULAR &
NGRX

2scenelab.io@n_mehlhorn

Minimize opportunity for error, but
accept that mistakes will happen

3@n_mehlhorn

4scenelab.io@n_mehlhorn

NILS MEHLHORN
freelance software engineer
founder of scenelab.io

5

nils-mehlhorn.dewww

@n_mehlhorn

@n_mehlhorn

6

NGRX BOOK
Pay what you want for the
complete learning resource

gum.co/angular-ngrx-book

@n_mehlhorn

ERROR TOLERANCE = USER-FRIENDLY DESIGN

● users have different backgrounds
● ease onboarding
➙ confidence & creativity

7

browser supports only some interactions

@n_mehlhorn

KEYBOARD SHORTCUTS: CONSIDERATIONS

8@n_mehlhorn

● common combinations: Ctrl + Z / Ctrl + Shift + Z

● provide legend and/or tooltips

● consider existing browser shortcuts

● consider internationalization

KEYBOARD SHORTCUTS: IMPLEMENTATION

9@n_mehlhorn

● Key Event Bindings

● EventManager

● NgRx Effect

<div (keydown.control.z)="undo()"
 (keydown.control.shift.z)="redo()”>
</div>

Recommended Read
Keyboard Shortcuts in Angular -- Netanel Basal

shortcut$ = createEffect(() =>
 fromEvent(document, ‘keydown’)
 .pipe(...)
)

https://nils-mehlhorn.de/posts/indicating-loading-the-right-way-in-angular

10

component service

service

service

service

service

component

component

State everywhere
Where to begin?

@n_mehlhorn

REDUX / NGRX ARCHITECTURE
11

STORE

REDUCER
UI

ACTION
dispatch trigger

updaterender

12

store

component

service

component

service

service

component

service

Single Source of Truth

@n_mehlhorn

READ-ONLY STATES

13

S1S3 S2

REDUCER

S4

Services
Components

Undo-Redo
History?

ACTION

@n_mehlhorn

dispatch

PURE FUNCTIONS

14

REDUCER

S2

ACTION

@n_mehlhorn

S1

META-REDUCER

Put Undo-Redo
Logic here

HISTORY OF STATES
15

interface History {
 past: Array<State>
 present: State
 future: Array<State>
} case 'UNDO':

 const previous = history.past[0]
 const newPast = history.past.slice(1)
 history = {
 past: newPast,
 present: previous,
 future: [history.present, ...history.future]
 }
 return previous

default:
 const newPresent = reducer(state, action)
 history = {
 past: [history.present, ...history.past],
 present: newPresent,
 future: [] // clear future
 }
 return newPresent

@n_mehlhorn

HISTORY OF STATES

👍 intuitive implementation

👍 most libraries do this

👎 it can get big

👎 it’s all or nothing

16@n_mehlhorn

17

A1 A2

S1 S2 S3

undo

undoable not
undoable

ALL OR NOTHING: GOING BACK MEANS LOSING THE GREEN SQUARE@n_mehlhorn

HISTORY OF STATES

👍 intuitive implementation

👍 most libraries do this

👎 it can get big

👎 it’s all or nothing

18

careful reducer composition required

@n_mehlhorn

19

S1
A1

S2
A2

S3
A3

S4
not

undoable

S1
A1

S2
A2

S3

undo

not
undoable

S1
A2

S3a

undo

not
undoable

HISTORY OF ACTIONS@n_mehlhorn

interface History {
 actions: Array<Action>
 base: State
}

HISTORY OF ACTIONS
20

const lastState = history.actions
 .slice(0, -1) // every action except the last one
 .reduce(
 (state, action) => reducer(state, action),
 history.base
)

interface History {
 actions: Array<Action>
 base: State
}

@n_mehlhorn

HISTORY OF ACTIONS

👍 actions < states

👍 ignore some actions

👎 tricky implementation

👎 expensive recalculation

21@n_mehlhorn

22

There’s another way back
to the future

Delorean Vectors by Vecteezy@n_mehlhorn

23JSON Patch

// initial state
const state = { "firstname": "John" }

// JSON Patch representing what reducer did to change the state
const patch = [
 { "op": "add", "path": "/lastname", "value": "Doe" }
]

// result state when applying patch to S1
const next = { "firstname": "John", "lastname": "Doe" }

@n_mehlhorn

24Inverse JSON Patch

// result state from before
const next = { "firstname": "John", "lastname": "Doe" }

// JSON Patch representing the reverse
// of what reducer did to change the state
const inversePatch = [
 { "op": "remove", "path": "/lastname" }
]

// resulting initial state when applying inversePatch to S2
const state = { "firstname": "John" }

@n_mehlhorn

25COPY-ON-WRITE

state nextdraft

@n_mehlhorn

26

import produce, {applyPatches} from "immer"

const state = { "firstname": "John" }

let undoPatches

const next = produce(
 state,
 draft => {
 draft.lastname = "Doe"
 },
 (patches, inversePatches) => {
 undoPatches = inversePatches
 }
)

const patched = applyPatches(next, undoPatches)

expect(patched).toEqual(state)

PATCHES WITH IMMER@n_mehlhorn

HISTORY OF PATCHES

👍 lightweight

👍 ignore some actions

👍 feasible implementation

👍 no recalculation

👉 requires Immer

27@n_mehlhorn

NGRX-WIEDER

28

● patch-based undo-redo
● ignore actions
● merge actions
● segmentation

DEMO

@n_mehlhorn

https://stackblitz.com/github/nilsmehlhorn/ngrx-wieder-example

Place your screenshot here

29

1. Visit Blog
2. Join Mailing List
3. Follow On Twitter
4. Work With Me

nils-mehlhorn.dewww

@n_mehlhorn

